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1. Principles of SPC/SQC

Western Electric-AT&T Statistical Quality Control Handbook:

“SQC is a scientific method of analyzing data and using the
analysis to solve practical problems”

“Quality”: Desirable characteristics of a product or process

(sorting good from bad is inadequate: Need to focus on process)

“Control”: Keep process within boundaries so it behaves in a
predictable fashion

e minimize variation in output
e meet customer expectations (define “customer”)

e institute procedures for continual improvement




SPC steps and tools

Steps

1. Understand process

2. Define process measures
(customer-oriented)

3. Collect/summarize data
4. Process monitoring

5. Characterize current

process/product performance

6. Continual improvement

Tools

Flowcharts

Surveys

Gage R&R Studies
Exp’t design/analysis
Control charts

Data analysis,
tolerancing

Exp’t design/analysis




Goals of Public Health Surveillance

. Disease surveillance: changes in “known” patterns of
incidence or mortality

Syndromic surveillance: more or less gradual trends

. Epidemic surveillance: unusual disease or outbreak where
none or very few cases are expected

Different SPC monitoring tools for each situation:

1. Shewhart control charts

2. Cumulative sum charts (CUSUM);

Exponential weighted moving average (EWMA)

3. Defects charts

Based on straightforward statistical principles




3. Data types and time periods

Rates: Need reliable denominators, and grouped time periods
or areas for sufficiently reliable rates

Counts:
Large counts: Poisson — (Gaussian
Small counts: Poisson (not Gaussian)

— Monthly (e.g., not highly contagious)

— Weekly (e.g., influenza)

— Daily (e.g, West Nile Virus in summer)
— hourly (biological warfare)

Length of time interval depends on data to be monitored




4. Control charts

“Extremely powerful (and deceptively simple) tool” to assess
process stability, detect process aberrations

(Vardeman and Jobe 1999)
Walter Shewhart, Bell Labs 1920s-1930s:

observed variation = baseline variation + removable variation

“baseline”: from measurement technology, random factors

(temperature), short-term effects: “stable”

“removable”: “special cause”, “assignable”, “non-random”,

elimination returns process to “stable”




Generic control chart

Statistic (); plotted as a point at time ¢
Ex: @)} = Z; = mean of measurements on n samples (choice of n)

Plot “Center Line”
e “Standards given”: nominal targets (e.g., 5 cases)
e “Retrospective”: use historical data
Plot upper/lower control limits UCLg, LCLg 3
P{ Q: ¢ (LCLg, UCLg) } is “small”

Avoid multiple false alarms: UCLg, LCLg = & £ 36/+/n




Types of Shewhart charts

Data type Q: Center (LCL,UCL) Distribution
Measurement  T; +36/4/n Normal

Proportions ++/p(1 —p)/n  Binomial

Counts +3/u Poisson
Spread S Bss, B,s Chi-Square
Pt =Tt/ng; D= Tt/ ) Ny
Bs, By: product of 0.5%, 99.5% quantiles from x2_; and factor
to make s unbiased for o




Shewhart chart patterns
In-control process:
e No obvious pattern or trend

e Rarely fall outside control limits

e Cluster about center line, above/below equally often

e Approach control limits only occasionally
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Out-of-control process:

e Systematic variations/cycles:
seasonal patterns, changes in shift /operator, etc.

Instability: many points outside control limits

Changes in level:
Abrupt: New equipment, reporting definitions
Gradual: Change in practice, tool wearout

Mixtures: aberrations, grouping, clumping

(may require stratification)

Shewhart alarm rules (many versions)
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Demonstrable usefulness
Contaminated process (Thompson & Koronacki 2001):
Xo ~ N(10,0.01) underlying process
X1 ~ N(0.4,0.02) contamination (Prob p; = 0.1)
X2 ~ N(—.2,0.08) contamination (Prob ps; = 0.05)
Observe Y; =

X ~ N(10,0.01) with probability 0.855

Xo + X1 ~ N(10.4,0.03) with probability 0.095

Xo + X5 ~ N(9.8,0.09) with probability 0.045

Xo + X1 4+ Xa ~ N(10.2,0.11) with probability 0.005
E(Y;) = 10.03, Var(Y;) = 0.0323
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E(s?) = 0.01 + 0.1(0.02) + 0.05(0.08) = 0.016
E(LCL,UCL) ~ 10.03 £3,/0.016/5 = (9.86, 10.2)

[-- in-control --]

control chart has >50% chance of detecting contamination,

even when based on erroneous means and variances

How quickly can the chart detect an aberration? (ARL)
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Poisson u-chart ARL

Assume A = 1.5 defects (cases) per unit (area):
(LCL,UCL) = (0, 1.5 + 3v1.5) = (0, 5.2) (= exact)
¢ = Pr{X > 5.2} = 0.005 = ARLq = 200

Change in A = 4.5:

Two samples at once: A = 3.0: (LCL,UCL) = (0, 8.2)
q = Pr{X > 8.2} =0.0038 = ARLy = 263

Change in A = 9.0:

¢ =Pr{X >82} = 0544 = ARLg( = 1.8

Fewer false alarms, faster signal of change, twice the inspection
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Exponentially Weighted Moving Average
Plot «\ﬂ\? where %ﬁ — v,@n + AH — \/v%ﬁlH
“Smoothed” control chart

One-step-ahead prediction forecast for IMA(1,1) = integrated
moving average model (e; = white noise):
Ty — Tp—1 = € — A€4—1
“Optimal” choice of A\: Minimize ARLs
Control limits depend on A:

(LCL,UCL) = pg £ H -0g/A/(2 = ))

Signals faster than Shewhart for small changes, but more slowly

for very large process changes (outliers are smoothed out)

Tables for X\ for desired ARL, detectable change ¢
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Cumulative Sum Chart (CUSUM)

Sequential Likelihood Ratio Test Statistic:
Given target level T' and statistics ()¢, plot Ws:
Wi (Qe —T)+Wi1 = MUN.HH Q; T
t(Q:—T), Q¢=mean{Q1, ..., Q¢}

Changes in slope of plot reflect changes in target T

N.\w = Ewﬁﬁou A@u — Nm‘wv + N.\uIHHv
qﬁ = B@NAOQ Aﬁww — NA‘HV + leuuv

Acceptance interval (L¢, U;); Out-of-control if Uy > h or Ly < —h
Disease surveillance: only high CUSUM, h = §/2
KK + KB (2007): CUSUM to detect shift in linear trend

16



Simulated incidence: rt(2), runif(10,5,30)

1000

Robust Cusum detection at times 503, 1001, 1501
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Robust Cusum detection at 503, 1001, 1501
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kkcusumr <- function(y,k,nlag) {
# y=data; k=#S5SDs; nlag=lag fit trend via RRLINE
n <- length(y); ww <- rep(O,n)
nlagl <- nlag+l; nlag3 <- floor((nlag+2)/3)
for (i in nlagl:n) {
il <- i-nlag; 12 <- i-1
xx <- 11:i2 ; yy <- yl[il:i2]
x1 <- (xx[nlag3/2 + 1] + xx[(nlag3+1)/2])/2
x3 <- i2 - (nlag3-1)/2
y1l <- median(yy[1l:nlag3])

y3 <- median(yy[(2*nlag3 - 1):nlag])
tmp.slope <- (y3-y1)/(x3-x1)
tmp.int <- median(yy-tmp.slope*xx)

res <- yy - tmp.int - tmp.slopex*xx
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ss <- 1.4826*median(abs(res))
rr <- tmp.int + tmp.slope*i + k*ss

wwlil <- max(ww[i-1] + y[i] - rr, O)

+

print (c(max(ww),(1:n) [ww > k]))

plot (ww,type="b")
return(c((1:n) [ww > k1)) }
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ARL Comparisons: ARLy = 370, EWMA (\*)

1o — target|/og
Chart 1h 2 2h 3 3h

Shewhart 43 15 3.2 20 14

EWMA* 37 11 5h 24 1.8 1.4
SC-ARMA 164 49 17 3.0 2.1 na
Optimal A* .05 .14 .25 37 .54 .70 .82

SC-ARMA: Shewhart chart on residuals of fitted ARMA(1,1)
(¢1 = 0.475, 6; = 0.45, p; = 0.025)
Vardeman and Jobe 1999; Crowder 1987; Wardell et al. 1994

7
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Correlated data
Alwan and Roberts (1988): Fit ARMA(p,q)

1. “Common-cause control chart”:
Plot forecasted values
Accounts for systematic variation

2. “Special Cause” charts:

Principle: Systematic variation can be removed via dynamic

process control (“feedback loops”) or design of

experiments focused on minimizing variation
Fit ARMA; Plot residuals from fitted ARMA

Shewhart control chart on residuals

Effect of fitting wrong model?
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Cyclical behavior

Control charts to detect cycles

Beneke et al. (1988): Periodogram I, = I(2nj/T)
Q¢ = max(I;) / ) I

(relative contribution to periodogram at ;" Fourier frequency)

Spurrier and Thombs (1990): Harmonic analysis (¢ = 1,...,T)

Tr = p+ ) i ajeos(2mjt/T) + Bisin(2mjt/T) + €
(cf. Bloomfield 1976)

Plot maximum reduction in sum of squares by fitting jt* Fourier

frequency, compared to Y (z; — T)?

Computationally involved; not easily interpretable;
designed to detect very specific behavior (cycles)
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Multivariate Charts

x; = vector of p measurements (counts, rates)
per unit (county, tract) at time ¢

Hotelling’s T

Plot Q: =T* =n(Z —p)V H(Z—p) =3, py d;r" d;
p = target mean, d; = (T; — 1;)/s;

V = covariance matrix among measurements

rJ = {jt" element of inverse correlation matrix

T? = nominally distributed as x;
Centerline = p, UCL = p+ 3+/2p

Independence = T? = Y (tstat;)* = signal cumulative small
changes but perhaps not one large change

Robustness?
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Multivariate CUSUM (Healy 1987):
Plot Q; = max(0, Q¢—1 + a’'(xt — pug) — D/2)
o/ =§%71/D, D= (§'S716)1/2

0 = change from in-control mean

To detect shift in mean of multivariate normal random vector,
Multivariate CUSUM reduces to univariate normal CUSUM

Power depends on pq, fig, 2 only through D (not on p).
Same one-sided ARLs as for CUSUM.

MEWMA: @w = HNJwv Plot «\«\? where S\ﬂ = y@w + AH_. — yvﬁ\—\ﬂlH

Judgment composites?
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5. Sample data from CDC

Goal: Disease surveillance (more or less known patterns of
incidence) CDC’s NNDSS

(National Notifiable Disease Surveillance System)

Reports in MMWR (Mortality and Morbidity Weekly Report)

Number of cases of notifiable disease in 4-week period
13 periods per year, 1980-1990 (11 years)

Next count comes in

Question: Is there cause for alarm?
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Sample data: Legionellosis

82
83
84
85
86
87
88
89
90

Is “98” unusual?
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Problems for Disease Surveillance

SPC techniques assume:
. independent measurements
. equally-likely units are randomly selected
. sources of variation are largely enumerable

. changes can be isolated and addressed
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Disease surveillance data involve:
1. highly correlated data across time periods
missing people that have zero chance of selection
complex /nonlinear /unknown sources of variation
changing effects of variation (e.g., HIV)
Changes in measuring instruments (survey, reporting)

Changes in data availability (HIPAA)

Changes in definition of disease (e.g., CD4 count)

. Effect of treatment on incidence data (e.g., AZT)

How well do these tools work on such data?

31



6. Modeling Seasonality

Need to take account of seasonal trend

One simple way:

e Estimate typical “Period 1” effect (average of previous

“Period 1” observations)

e Subtract typical “Period 1”7 effect from all observations that
occurred in Period 1
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But:
e Years are changing also

e Time points are not independent; highly correlated (even

after subtracting year/period effects)

Usually we do not know “typical year” effect or “typical
period” effect

Abrupt changes
e Nonlinear trends, highly nonstationary data

Therefore, usual “control chart” procedures may not apply.
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6. Some modeling

Methods depend on type of data:
Time period: Monthly, weekly, daily, hourly
Seasonal effects?
smallish counts (0, 1, 2, ...)
medium-sized counts (dozens)
large counts: hundreds, thousands

Typically transform via square roots or logs to remove
dependence of uncertainty on magnitude of the count
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Hepatitis—A
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Legionellosis
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Malaria
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Kafadar and Stroup, Statistics in Medicine, 1992
Stroup et al., American Journal of Epidemiology, 1993

Current count: 98
Counts from same period, 1 period, for previous 5 years:

Original Square Root
current 98 9.90
2003 65 60 | 8.72 8.06 7.75
2002 59 48 | 7.48 T7.68 6.93
2001 75 51 | 5.74 T7.42 8.66
2000 45 36 | 6.40 6.32 6.71
1999 32 36 | 5.92 6.40 5.66
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Mean (median) of 15 historical counts = 50.9 (48)
Standard deviation of 15 counts = 13.8
Ratio of current to historical mean (median) = 1.93, 2.04

Square root: Mean (median) of 15 past counts = 7.06 (6.93)
Standard deviation of 15 counts = 1.00

Ratio of current to historical mean (median) = 1.40, 1.43
Estimated standard deviation = 0.165
“9-SD-interval”: 1.40 + 2(0.165) = (1.07, 1.73)

Interval does not cover 1.00 = “98” may be considered “high”
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7. Other Methods

Tests for data exhibiting no seasonality:
e “Clusters” in time: Many events in few adjacent time periods
e “Rare events’: Many periods with no cases

e Most methods are based on binomial or Poisson counts

o Tukey’s “statistical strength” (1992 unpublished, of course):
Q: = /4(obsy) + 2 — \/4(exps) + 1 ~ N(0,1)

rounded to nearest integer (Freeman and Tukey 1950)
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7. Final Thoughts

Routine application of SPC tools (e.g., control charts) will require
thoughtful modeling due to autocorrelation, seasonality,
accountable changes (e.g., changes in reporting), nonstationarity

Some simple tools might be useful in the meantime

Tukey (1959) attributes to Churchill Eisenhart: “practical power
of a procedure” = product of mathematical power and probability

that the procedure will be used
“A compact procedure may well be used so much more often as to

more than compensate for its loss of mathematical power” (p.32)

Much work remains to be done
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